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AI come supporto alle decisioni cliniche

• L'Intelligenza Artificiale entra in diagnostica, triage, gestione delle cronicità, refertazione.

• Gli editoriali di Nature Medicine, NEJM e JAMA invitano a valutare l'AI nel contesto reale, non solo su metriche di 
su metriche di laboratorio: come vengono accettate, modificate o ignorate le raccomandazioni.

• Topol descrive una "medicina ad alte prestazioni" che nasce dalla convergenza fra intelligenza umana e artificiale
umana e artificiale, con l'AI in ruolo di potenziamento, non sostitutivo.

, 

Rif. Topol EJ. Nat Med 2019; Kohane IS. N Engl J Med 2024; Nature Medicine 2025.



Il progetto 
HealthBench: 
validazione su scala 
globale

5K+
Scenari clinici

Scenari realistici costruiti su 

linee guida internazionali e 

casi clinici reali

262
Medici coinvolti

Professionisti sanitari 

distribuiti in 60 paesi per 

validazione cross-culturale

48.5K
Rubriche valutative

Metriche su accuratezza, 

sicurezza, empatia, chiarezza 

e gestione dell'incertezza

Benchmark open-access misura la clinical alignment dei Large Language Models, evidenziando 

gap di performance significativi tra diverse aree cliniche.

Contributo personale: sviluppo di rubriche specifiche per primary care 

(multimorbidità, incertezza, continuità assistenziale) e analisi comparativa per definire 

soglie minime di sicurezza in Medicina Generale.



Human in, on, out of the loop

Human in the loop (HITL)
• L'AI elabora dati e propone 

diagnosi, priorità, piani o testi.

• Il clinico esamina, integra, 
modifica o rifiuta la proposta.

• La decisione finale e la 
responsabilità restano umane.

Human on the loop
L'AI agisce quasi in autonomia, 
mentre il clinico mantiene un ruolo di 
ruolo di sorveglianza e intervento in 
intervento in caso di anomalie.

Human out of the loop
L'AI prende decisioni che vengono 
vengono eseguite senza un controllo 
controllo umano significativo.

Rif. Nature Medicine 2025 – "For trustworthy AI, keep the human in the loop".



Perché il "human in 
the loop" è centrale

• Gli editoriali di Nature Medicine sottolineano che la fiducia nell'AI 
dipende dalla capacità di integrare il giudizio clinico e non di sostituirlo.

• La prospettiva HITL considera il binomio clinico+AI come unità di 
analisi e misura l'effetto sui pazienti, non solo sulla metrica del modello.

Rif. Nat Med 2025 – "For trustworthy AI, keep the human in the loop".

loop".



Automation Bias: definizione operativa
Revisione sistematica di Goddard et al. su JAMIA: l'automation bias è la tendenza a sovrastimare l'accuratezza 

del sistema automatizzato.

del sistema 

Si manifesta come:

Errori di omissione

il clinico trascura informazioni cliniche non evidenziate 

evidenziate dall'AI.

Errori di commissione

il clinico segue raccomandazioni errate, ignorando dati 

discordanti.

Fattori mediatori: fiducia nell'automazione, carico di lavoro, tempo limitato, stile cognitivo del medico.

Rif. Goddard K et al. J Am Med Inform Assoc. 2012;19(1):121–127.



Automation Bias: dati da studi empirici

Goddard et al., JAMIA 2012

• 74 studi inclusi su oltre 13.000 record iniziali.

• In alcuni contesti clinici, errori associati ad automation bias 
nel 6–11% delle consultazioni.

Studi recenti con assistenti AI in patologia 
computazionale

• L'integrazione di AI migliora la performance media.

• Si osserva comunque un tasso di circa 7% di casi in cui un 
giudizio corretto viene modificato in uno errato per seguire 
il modello.

Rif. Goddard K et al., JAMIA 2012; Rosbach E et al., 2024 (computational pathology).



Assistive AI: quando il “supporto” può creare danno

Khera et al. su JAMA: discussione di uno studio con centinaia di clinici che gestiscono un caso di dispnea con supporto AI.

supporto AI.
Risultati chiave:

AI "corretta" migliora la probabilità di 

diagnosi corretta rispetto al gruppo senza 
AI.

AI "distorta" porta i clinici a 

allontanarsi sistematicamente

allontanarsi 

dalla 
diagnosi appropriata.

Le spiegazioni attenuano ma non 

eliminano l'effetto negativo.

Conclusione: anche un sistema "assistivo" può introdurre nuovi tipi di errore se l'automation bias non viene gestito.

Rif. Khera R, Simon MA, Ross JS. JAMA. 2023;330(23):2255–2257.



"When the model trains
 you" (NEJM AI 2024)

Studio di Kwong et al. su modello AI per idronefrosi pediatrica.

Durante il "silent trial", senza modifica apparente del contesto:

• L’uso di scintigrafia renale scende da circa 80% a 58%.
• Non vengono rilevate variazioni di linee guida, team o casi.

Interpretazione:

• L'esposizione a dataset e predizioni del modello induce revisione delle soglie decisionali dei clinici.

• Il modello non solo supporta decisioni, ma plasma il modo di decidere. 

Rif. Kwong JCC et al. NEJM AI. 2024;1(2):AIcs2300004.



Studio Multicentrico in Colonscopia: evidenze concrete di deskilling percettivo
Un trial osservazionale multicentrico condotto in quattro centri endoscopici ha rilevato che l'utilizzo routinario di un sistema AI per la rilevazione dei 
polipi è stato associato a una riduzione significativa dell'adenoma detection rate (ADR) nelle procedure effettuate senza AI dopo il periodo di 
esposizione.

Prima dell'esposizione all'AI

ADR senza AI: 28,4%
(226 su 795 pazienti)

Dopo l'uso routinario dell'AI

ADR senza AI: 22,4%
(145 su 648 pazienti)

-6%
Differenza assoluta

IC 95% −10,5 a −1,6; p = 0,0089

1,443
Pazienti coinvolti

Studio multicentrico su 4 centri

I risultati sono compatibili con un effetto di deskilling percettivo e cognitivo, con endoscopisti meno abituati a 
un'esplorazione visiva attiva quando l'AI non è disponibile.



Explainability (XAI): a cosa serve realmente
Amann et al. (BMC 2020) analizzano l'explainability da prospettive: tecnologica, clinica, legale, del paziente.

Funzioni principali in sanità:

• Supportare la valutazione critica della raccomandazione da 
parte del clinico.

• Sostenere responsabilità e consenso informato.

• Favorire la fiducia nel sistema, se usata in modo credibile.
credibile.

Limiti:

• Spiegazioni post-hoc generiche possono risultare poco 
informative o fuorvianti.

• Un'eccessiva complessità rischia di aumentare, non ridurre, il 
ridurre, il carico cognitivo.

Rif. Amann J et al. BMC Med Inform Decis Mak. 2020;20:310.



Explainability e "illusione di comprensione"

Hildt (Bioengineering 2025) discute come i bisogni di explainability varino con tipo di decisione (screening, diagnosi, triage, 

allocazione risorse).

Per decisioni ad alto impatto individuale:

• Serve una comprensione di massima di perché il sistema propone X.

• Occorre sapere quali alternative sono state considerate o escluse.

Il rischio:

Spiegazioni poco trasparenti o troppo sofisticate possono generare una falsa sensazione di capire, rafforzando 

l'automation bias.

Rif. Hildt E. Bioengineering. 2025;12(4):375.



XAI e progettazione centrata sull'utente
Studi recenti mostrano che le tecniche XAI risultano utili solo se:

1

si integrano nei flussi di lavoro reali 

dei clinici;

2

usano un linguaggio e visualizzazioni

visualizzazioni comprensibili;

3

vengono co-progettate con gli 

utilizzatori finali.

Gli autori raccomandano:

• approccio di user-centered design e iterazione continua;

• valutazione prospettica dell'impatto su errori, bias e tempi di decisione.

Rif. Prince EW et al. Front Radiol. 2025; altri lavori recenti su XAI e CDSS.



Principi di design per 
ridurre l'automation bias

Favorire il giudizio attivo 
attivo del clinico
• Richiedere una valutazione 

valutazione preliminare 
prima di mostrare il 
suggerimento.• Evitare flussi che permettono 
di accettare tutto con un solo 
click.

Esporre incertezza e fattori 
fattori chiave
• Mostrare probabilità, 

intervalli, feature principali 
che hanno guidato la 
previsione.

Monitorare l'uso nel tempo
• Analizzare pattern di "approvazione automatica".

• Osservare eventuali cambiamenti nelle soglie decisionali dei clinici.
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