

Servizio Sanitario della Toscana

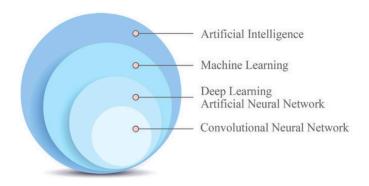
CAREGGI TRA INNOVAZIONE STRATEGICA E INNOVAZIONE DI SERVIZIO

18° FORUM RISK MANAGEMENT

21 NOVEMBRE 2023 dalle ore 14.00 alle ore 18.00 SALA PETRARCA

Impatto clinico delle innovazioni nel Dipartimento delle Diagnostiche

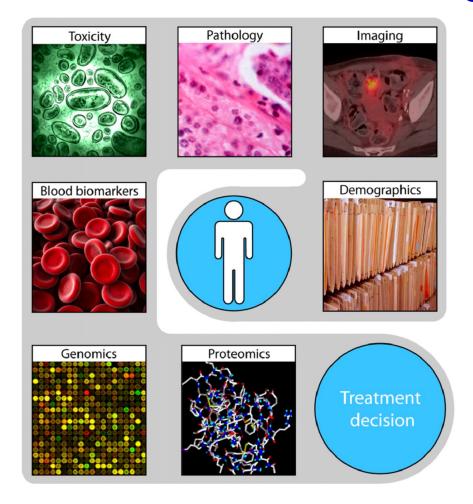
Vittorio Miele, Daniela Massi



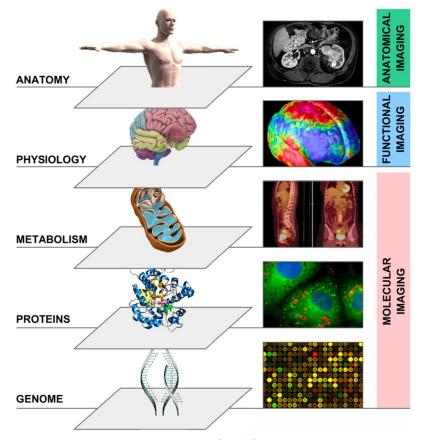
Radiologist work in a complete digitalized environment:

- Image data are collected in PACS from 2001 with **DICOM** standard, an hybrid images' format that combines images information, technical information, time of exams execution, patient's information
- RIS integrated patient anamnestic and personal information and radiological reports

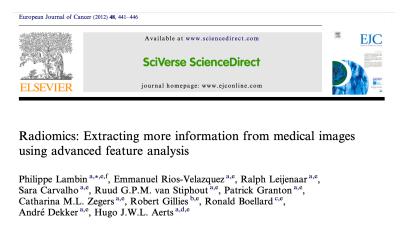
Treatment decision – a multitasking strategy

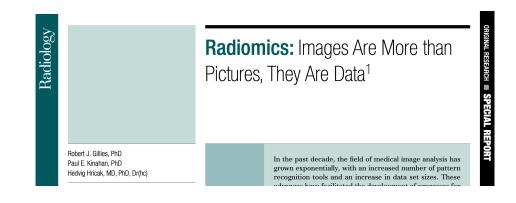


Diagnostic Imaging – multimodality strategy from Radiology to Molecular Imaging



Radiomics - data mining from morphological information to functional and genetic information

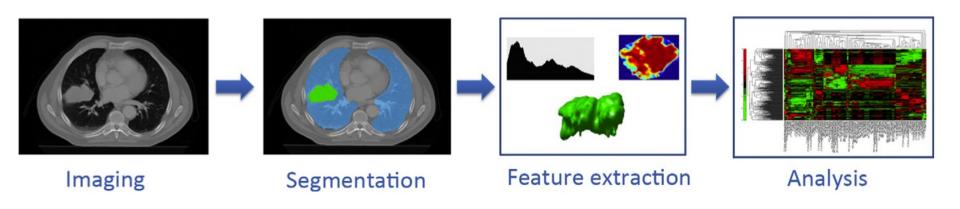




Radiomics is defined as the conversion of images to higher-dimensional data and the subsequent mining of these data for improved decision support.

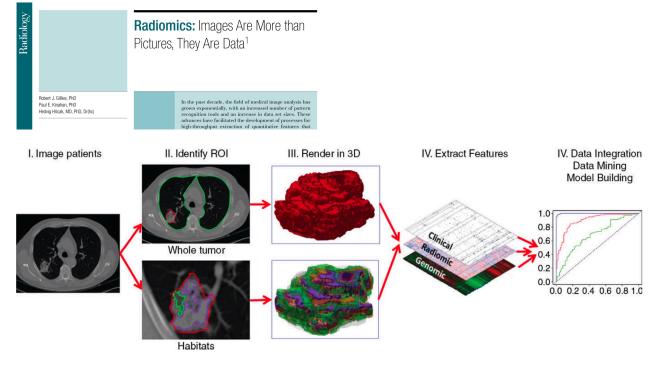
Radiomic analysis promises to increase precision in diagnosis, assessment of prognosis, and prediction of therapy response.

Radiomics - workflow



RADIOMICS

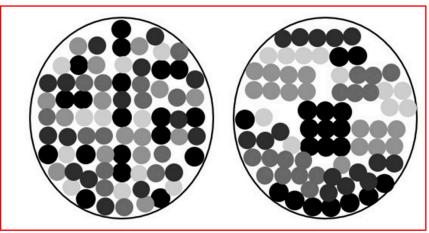
Extraction of quantitative information through radiomics algorithm needs precise measurements of biomarkers that correlate with diseases and their clinical management and prognosis Extraction of information is obtained by texture analysis with different parameters. Measurements obtain many data that needs artificial intelligence algorithms that can manage and correlate.

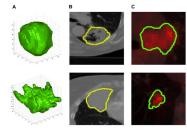


Semantic	Agnostic
Size	Histogram (skewness, kurtosis)
Shape	Haralick textures
Location	Laws textures
Vascularity	Wavelets
Spiculation	Laplacian transforms
Necrosis	Minkowski functionals
Attachments or lepidics	Fractal dimensions

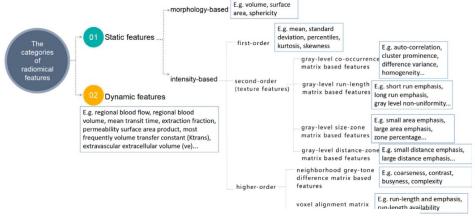
TEXTURE ANALYSIS

Texture Feature	Level/Order	Description	Examples	Comments
Intensity of pixel his- togram	First order	Histogram where x- axis represents pixel/ voxel gray level and y-axis represents frequency of occur- rence (Fig 2)	Mean gray-level intensity, threshold, standard de- viation or variance of the pixel histogram, skew- ness, kurtosis, first-order entropy, mean of the positive pixels (MPP)	Takes into account only pixel intensity, not spa- tial location or relation- ship of pixels First-order entropy is the irregularity or complex- ity of pixel intensities
Run-length matrix	Second order	Adjacent or consecu- tive pixels/voxels of a single gray level in a given direction	Run-length nonuniformity, gray-level nonunifor- mity, long-run emphasis, short-run emphasis, fraction	Similar to co-occurrence matrix, takes into ac- count both pixel intensity and spatial relationships
Gray-level co-oc- currence matrix	Second order	How often pairs of pixels with specific values in a specified spatial range occur in an image	Contrast, uniformity, second-order entropy, sum of variance, sum of averages, sum of entropy	
Advanced metrics	Higher order	Comparing differences and relationships between multiple pixels/voxels	Hundreds: autoregressive model, Haar wave- let (wavelet energy), geometry parameters, neighborhood gray-tone difference matrix	





Same number of grey circle, different distribution different texture parameters



ty

RADIOMICS AND RADIOGENOMICS IMPLEMENTATION external validation of radiomics data

Radiology

REVIEWS AND COMMENTARY - REVIEW

The Biological Meaning of Radiomic Features

Michal R. Tomaszewski, PhD • Robert J. Gillies, PhD

From the Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612. Received June 5, 2020; revision requested July 20; revision received July 30; accepted August 17. Address correspondence to R.J.G. (e-mail: Robert. Gillies@moffitt.org).

Supported by National Institutes of Health grants U01 CA143062 and U54 CA143970.

Conflicts of interest are listed at the end of this article.

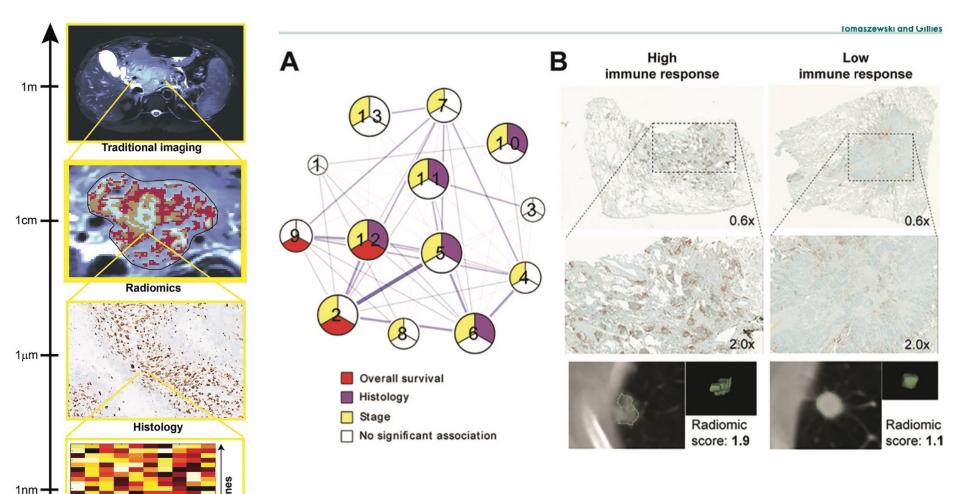
Radiology 2021; 298:505–516 • https://doi.org/10.1148/radiol.2021202553 • Content code: IN

- Radiomic analysis involves the automated extraction of clinically relevant information from radiologic images.
- 2) The data-driven nature of the radiomic method offers no direct insight into the biological meaning of the findings, thus highlighting the need for external validation.
- 3) Recent advances in the field are enabling biological validation of the radiomic signatures using a variety of correlates, including genetic and histologic data.
- 4) We predict that biological correlation will soon become standard in the field of radiomics, thus increasing the reproducibility of the findings and cementing the role of the method in clinical practice.

Arezzo, Forum Risk Management in Sanità – 21 Novembre 2023

Cells Genomics

CAREGGI TRA INNOVAZIONE STRATEGICA E INNOVAZIONE DI SERVIZIO



published: 26 January ?^^* doi: 10.3389/fonc.2020.57(

The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology

Lin Shui^{1†}, Haoyu Ren^{2†}, Xi Yang^{1†}, Jian Li³, Ziwei Chen⁴, Cheng Yi[†], Hong Zhu^{1*} and Pixian Shui^{5*}

Stu	udies	Study type	No. of specimen	Inclusion cri- teria	No. and type of Radiomic features	Image Modality	Clinical Characteristics	Statistical analysis
Bra	ain cancer							
	et al. (61)	Retrospective study	Validation: 84 from TCGA 272(training: validation= 182:92)	Grade II or III glioma	431 (intensity, shape, texture, and wavelet)	T2-weighted MRI	p53 status	Gene ontology (GO) analysis, LASSO Cox regression, SVM classifier, ROC curve analysis
Liu	et al. (62)	Retrospective study	41 patients	II or III glioma, GBM	-	MRI	ki-67, TP53 and IDH mutation, EGFR amplification, mTOR activation	hazards regression, Cox proportional hazards model
	azurowski al. (63)	Retrospective study	110 patients (TCGA)	Grade	5(shape)	FLAIR sequence MRI	IDH mutation, 1p/19q co-deletion	Univariate Cox proportional
Zin	n et al. (64)	Retrospective study	93 patients (TCGA/ TCIA/REMBR/ ANDT)	GBM	310 (intensity, shape, texture, and wavelet)	MRI	Periostin expression	LASSO Cox regression
Но	ng et al. (70	Retrospective study	176 patients	GBM	-	MRI	IDH 1/2 mutation, ATRX loss, MGMT promoter methylation	Univariate/multi-variate analysis, Cox regression
	ckingereder al. (71)	Retrospective study	152 patients	GBM	31 (intensity, shape, texture, and wavelet)	MRI	Global DNA methylation subgroups, MGMT promoter methylation status, and CDKN2A loss, EGFR amplification	Univariate analysis, stochastic gradient, boosting machine, random forest, penalized logistic regression classifiers
Cui	i et al. (72)	Retrospective study	108 patients (TCIA)	GBM	High-risk volume (HRV)	MRI	MGMT methylation status, NF1 and PIK3CA mutation	Cox regression analysis,
Hu	et al. (76)	Exploratory study	48 tissue of 13 patients	GBM	256 (240 MRI-texture features + 16 raw features [mean, SD])	MRI	Image-guided biopsy	Univariate/multi-variate analysis, decision-tree models, chi-square test
Jar (77	mshidi et al. ")	Retrospective study	23 patients	GBM	6(contrast enhancement, necrosis, contrast-to- necrosis ratio, infiltrative versus edematous T2 abnormality, mass effect, subventricular zone involvement)	MRI	messenger RNA expression, DNA copy number variation (CNV)	global gene set enrichment approach, gene set enrichment analysis, Pearson correlation algorithm
	east cance	er			·			
Li e		Retrospective study	453	breast cancer	Coarseness, contrast, percent density, radiographic texture analysis	full-field digital mammograms	BRCA1/2 mutation	Pearson correlation algorithm, ROC analysis
Gri (81		Retrospective study	275 patients	breast cancer	56 (size and shape, gradient, texture, dynamic)	DCE MRI	ER, PR, HER2 status	binary multivariate, logistic regression model
		Retrospective study	48 patients	breast cancer	23 (morphologic, textural, dynamic)	MRI	ER, PR, HER2 status	logistic regression, likelihood ratio tests
Zhi (84	u et al.	Exploratory study	270 patients	breast cancer	45-56	DCE MRI	ER, PR, HER2 status	off-the-shelf deep features approach, three neural network structures
et a		Retrospective study	70 patients	breast cancer	47 (geometric, statistical, spatiotemporal)	DCE MRI	ER, PR, p53, HER2 status, IncRNA transcripts	Cox regression analysis, log-rank Mantel-Cox test
	rlo et al.	Retrospective study	233 patients	Clear cell RCC	8 quantitative features	CT	VHL, PBRM1, SETD2, KDM5C, or BAP1 genes	Fleiss k, Fisher exact test, t test
	et al.	Retrospective study	255 patients	Clear cell RCC	156	СТ	VHL mutations	random forest based wrapper algorithm(Boruta),Wilcoxon rank- sum test
(10		Retrospective study	45 patients (TCGA)	Clear cell RCC	828 (first-order, texture, and wavelet)	CT	PBRM1 mutation	artificial neural network (ANN) algorithm, random forest

La radiologia medica (2022) 127:928–938 https://doi.org/10.1007/s11547-022-01529-x

ABDOMINAL RADIOLOGY

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): a radiomic model to predict tumor grade

Giuditta Chiti¹ · Giulia Grazzini^{1,2} · Federica Flammia¹ · Benedetta Matteuzzi¹ · Paolo Tortoli³ · Silvia Bettarini³ · Elisa Pasqualini⁴ · Vincenza Granata⁵ · Simone Busoni³ · Luca Messserini⁶ · Silvia Pradella^{1,2} · Daniela Massi⁴ · Vittorio Miele¹

La radiologia medica https://doi.org/10.1007/s11547-023-01609-6

ABDOMINAL RADIOLOGY

Branch duct-intraductal papillary mucinous neoplasms (BD-IPMNs): an MRI-based radiomic model to determine the malignant degeneration potential

Federica Flammia¹ · Tommaso Innocenti^{2,3} · Antonio Galluzzo¹ · Ginevra Danti¹ · Giuditta Chiti¹ · Giulia Grazzini¹ · Silvia Bettarini⁴ · Paolo Tortoli⁴ · Simone Busoni⁴ · Gabriele Dragoni^{2,3} · Matteo Gottin^{2,3} · Andrea Galli^{2,3} · Vittorio Miele¹

La radiologia medica https://doi.org/10.1007/s11547-023-01592-y

CHEST RADIOLOGY

Reproducibility of CT radiomic features in lung neuroendocrine tumours (NETs) patients: analysis in a heterogeneous population

Eleonora Bicci¹ · Diletta Cozzi^{1,2} · Edoardo Cavigli¹ · Ron Ruzga¹ · Elena Bertelli¹ · Ginevra Danti¹ · Silvia Bettarini² · Paolo Tortoli² · Lorenzo Nicola Mazzoni⁴ · Simone Busoni³ · Vittorio Miele¹

Article

Radiomic Features Are Predictive of Response in Rectal Cancer Undergoing Therapy

Diletta Santini ¹, Ginevra Danti ^{1,*}, Eleonora Bicci ¹, Antonio Galluzzo ¹, Silvia Bettarini ², Simone Busoni ²
Tommaso Innocenti ³, Andrea Galli ³ and Vittorio Miele ¹

NAVIGATOR **EUROPEAN IMAGING BIOBANKS PROJECTS**

BIOBANK FOR AI EVALUATION EUROPEAN PROJECT

Università di Pisa

Azienda Ospedaliera

ARS TOSCANA

Società Italiana di Radiologia Medica e Interventistica

UNIVERSITY OF

CAMBRIDGE

Fondazione SIRM

NAVIGATOR: an Italian regional imaging biobank to promote precision medicine for oncologic patients

Rita Borqheresi¹, Andrea Barucci², Sara Colantonio³, Gayane Aghakhanyan¹¹o, Massimiliano Assante Elena Bertelli⁴, Emanuele Carlini³, Roberto Carpi⁵, Claudia Caudai³, Diletta Cavallero¹, Dania Cioni¹, Roberto Cirillo³, Valentina Colcelli², Andrea Dell'Amico³, Domnico Di Ganqi³, Paola Anna Erba¹, Lorenzo Faggioni¹, Zeno Falaschi¹, Michela Gabelloni¹, Rosa Gini⁶, Lucio Lelli³, Pietro Liò⁷, Antonio Silvia Lucarini⁴, Paolo Manghi³, Francesco Mangiacrapa³, Chiara Marzi², Maria Antonietta Mazzei⁸, .aura Mercatelli⁴, Antonella Mirabile², Francesco Mungai⁴, Vittorio Miele⁴, Maristella Olmastroni asquale Pagano³, Fabiola Paiar¹, Giancarlo Panichi³, Maria Antonietta Pascali³, Filippo Pasquinelli Jorge Eduardo Shortrede¹, Lorenzo Tumminello¹, Luca Volterrani⁸, Emanuele Neri^{1,9} and on behalf of th NAVIGATOR Consortium Group

FUTURE: DIGITAL TWIN

DIGITAL HEALTH
Volume 9, January-December 2023
© The Author(s) 2023, Article Reuse Guidelines https://doi.org/10.1177/20552076221149651

Review article

Digital twin in healthcare: Recent updates and challenges

Tianze Sun^{1,2,*}, Xiwang He^{3,*}, and Zhonghai Li D ^{1,2}

Abstract

As simulation is playing an increasingly important role in medicine, providing the individual patient with a customised diagnosis and treatment is envisaged as part of future precision medicine. Such customisation will become possible through the emergence of digital twin (DT) technology. The objective of this article is to review the progress of prominent research on DT technology in medicine and discuss the potential applications and future opportunities as well as several challenges remaining in digital healthcare. A review of the literature was conducted using PubMed, Web of Science, Google Scholar, Scopus and related bibliographic resources, in which the following terms and their derivatives were considered during the search: DT, medicine and digital health virtual healthcare. Finally, analyses of the literature yielded 465 pertinent articles, of which we selected 22 for detailed review. We summarised the application examples of DT in medicine and analysed the applications in many fields of medicine. It revealed encouraging results that DT is being increasing applied in medicine. Results from this literature review indicated that DT healthcare, as a key fusion approach of future medicine, will bring the advantages of precision diagnose and personalised treatment into reality.

Darcnactin

Digital Twins in Radiology

Filippo Pesapane * , Anna Rotili , Silvia Penco, Luca Nicosia and Enrico Cassano

Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy * Correspondence: filippo.pesapane@ieo.it

Abstract: A digital twin is a virtual model developed to accurately reflect a physical thing or a system. In radiology, a digital twin of a radiological device enables developers to test its characteristics, make alterations to the design or materials, and test the success or failure of the modifications in a virtual environment. Innovative technologies, such as AI and -omics sciences, may build virtual models for patients that are continuously adjustable based on live-tracked health/lifestyle parameters. Accordingly, healthcare could use digital twins to improve personalized medicine. Furthermore, the accumulation of digital twin models from real-world deployments will enable large cohorts of digital patients that may be used for virtual clinical trials and population studies. Through their further refinement, development, and application into clinical practice, digital twins could be crucial in the era of personalized medicine, revolutionizing how diseases are detected and managed. Although significant challenges remain in the development of digital twins, a structural modification to the current operating models is occurring, and radiologists can guide the introduction of such technology into healthcare.

Keywords: digital twins; personalized medicine; digital devices; digital patients; artificial intelligence

NON INTERPRETIVE USE OF ARTIFICIAL INTELLIGENCE

Original Investigation

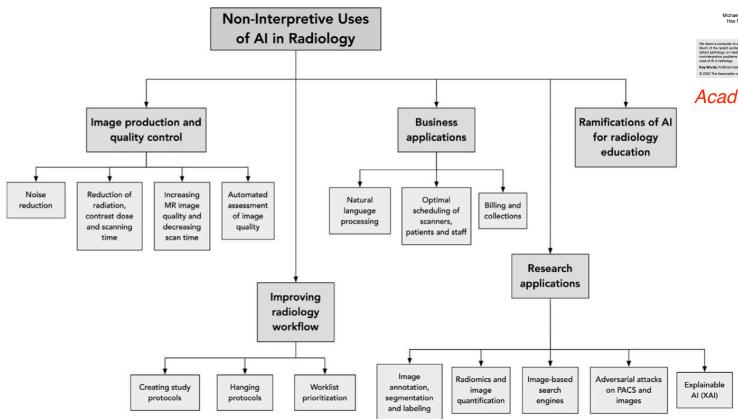
Noninterpretive Uses of Artificial Intelligence in Radiology

Michael L. Riichardson, MD, Elisabeth R. Garwood, MD, Yueh Lee, MD, Matthew D. Li, MD, Hao S. Lo, MD, MBA, Arun Nagaraju, MD, Xuan V. Nguyen, MD, PhD, Linda Probyn, MD, Prabhakar Rajiah, MD, Jeasica Sin, MD, Ashish P. Wasnik, MD, Kali Xu, MD

We down a computer to exhibit artificial intelligence (All when it performs a task that would normally require intelligent action by a hum Much of the recent excitement about All in the medical literature has revolved around the ability of Al models to recognize matomy or bilities pathology on medical images, committees at the level of texpert physicisms. However, All can also be used to solve a wide ranger noninterpretive problems that are relevant to radiologists and their patients. This review summarities some of the never noninterpret uses of All nations.

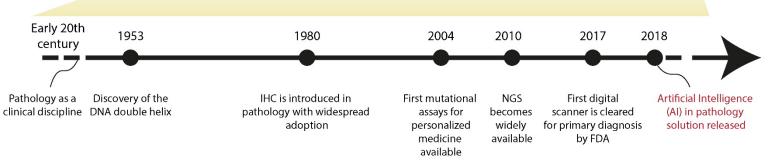
y Words: Artificial intelligence; Deep learning; Radiology applications; Radiology educations 2020 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

Academic Radiology, 2020

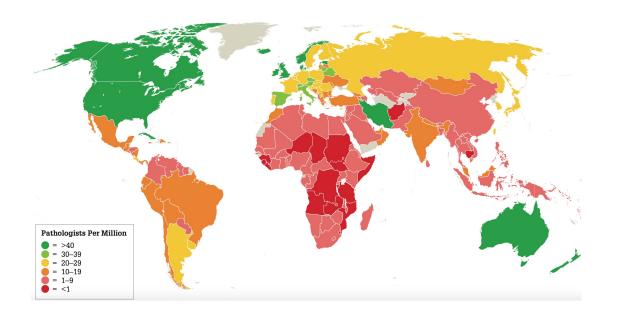


The Future of Diagnostics is Digital

20th and 21th century

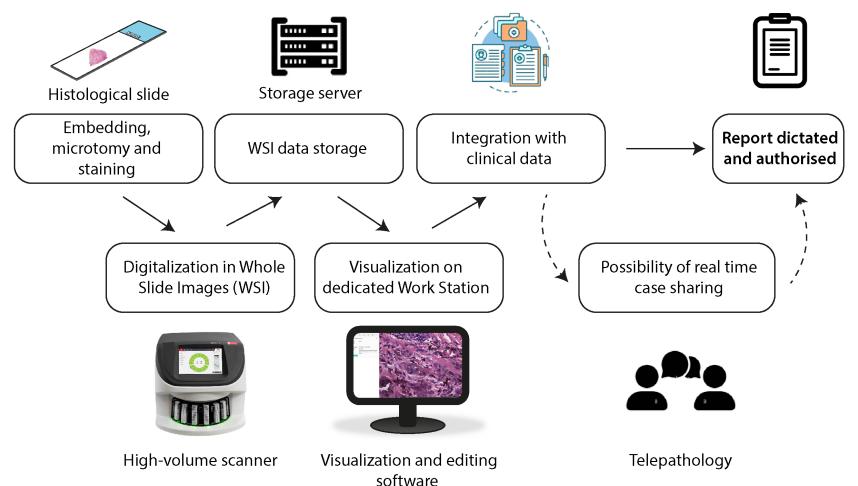


The Shortage of Pathologists

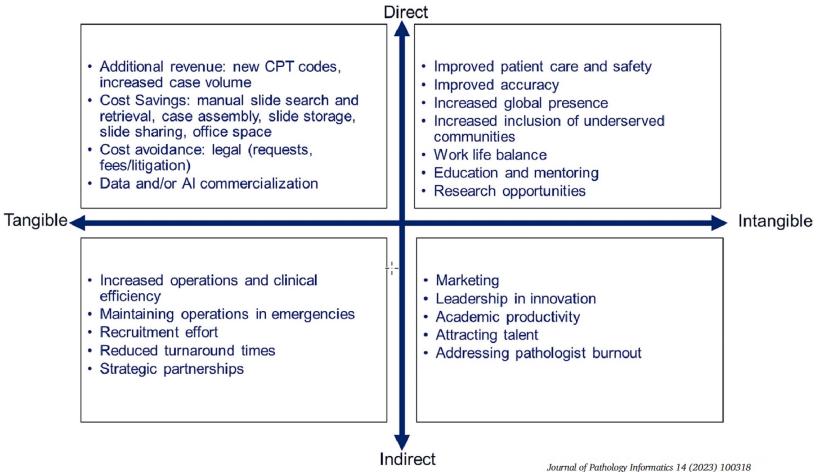


By 2030 the number of active pathologists may have dropped by 30 percent compared to 2010 levels

DIGITAL PATHOLOGY WORKFLOW



Digital Pathology Benefits



Digital Pathology Challenges

- Organization level

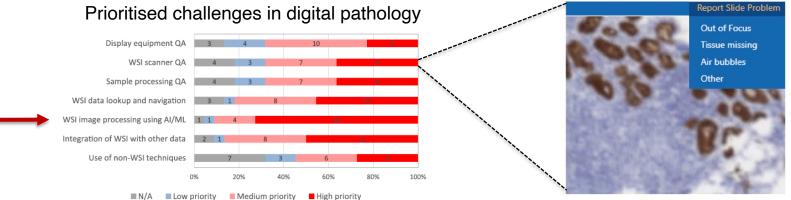
J Pathol Inform. 2023 May 16;14:100318

Digital pathology cost categories Scanner Acquisition 10% IT Hardware and Software 19% Scanner service Infrastructure Staff 10% 33% Scan Team Staff

J Pathol Inform. 2023 May 16;14:100318

IT Staff

- Pathologists' level



J Pathol Inform. 2022;13:100157

Mod Pathol. 2022 Feb;35(2):152-164.

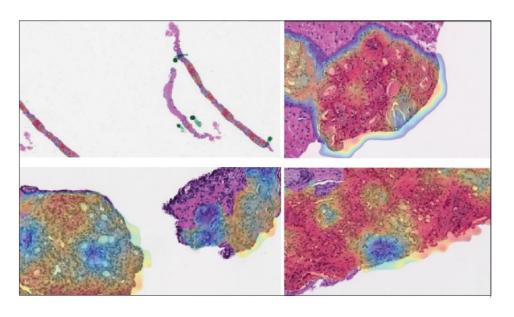
Digital Pathology Al Algorithms Enhance lab Artificial intelligence workflows Collaborate Standardize Machine learning efficiently training new staff Deep learning **Automated clinical** decision making Statistical Learning Theory Clinical practice Medical research Standard Statistics Enable new Improve patient care technology Gain new insights

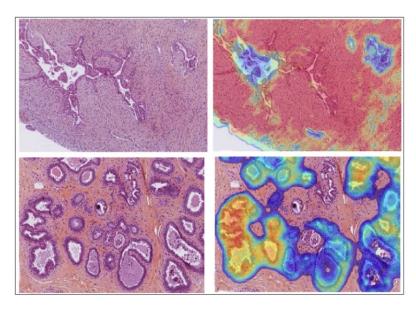
Translate whole slide images into discoveries, decisions and diagnoses

Real World Clinical Applications

Prostate Cancer

Breast Cancer

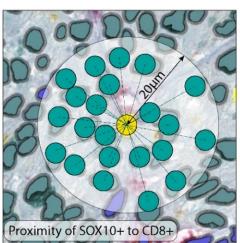




- Pre- Post- human analysis screening
- Quick detection of tumor areas
- Qualitative Measurements (tumor heatmap)
- Quantitative Measurements (areas, mitosis, grading)

Research Applications

Computational Pathology

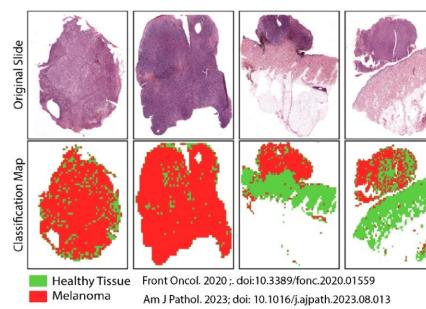


SOX10+ proximity within 20µm to CD8+

Cells. 2021; doi: 10.3390/cells10020422

Lab Invest. 2023; doi:0.1016/j.labinv.2023.100259

Classifier based on Deep Learning

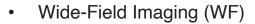


Focus on Two Integrated Digital Image Systems:

- Ophtalmic Pathology
- Neuropathology

Improving our value as gatekeepers for subspecialty expertise and for patient information, and integration of diagnostic data from *any* source

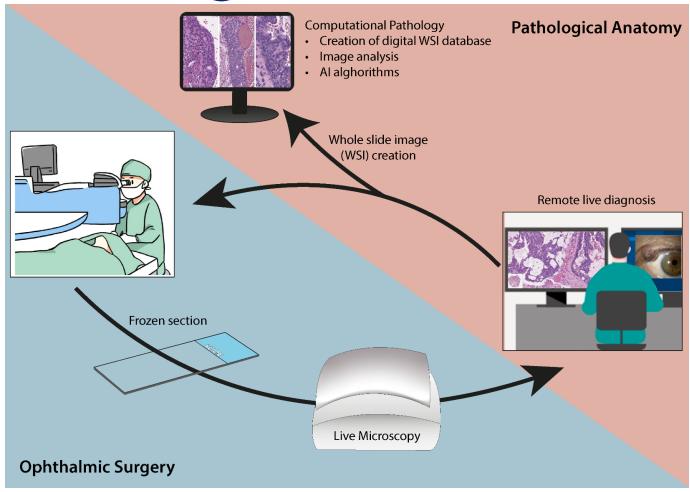
Ophthalmic Pathology Imaging Integration



- Ultra-Wide Field Imaging (UWF)
- Swept Source Optical Coherence Tomography (SS-OCT)
- Fluorescein Angiography (FA)
- OCT Angiography (OCTA)
- Ultrasound Imaging (US)
- Ultrasound Biomicroscopy (UBM)

- Whole Slide Imaging
- Ready access to digital slides database
- Telepathology (live microscopy)
- Computational Pathology
- Al based tools

Ophthalmic Pathology



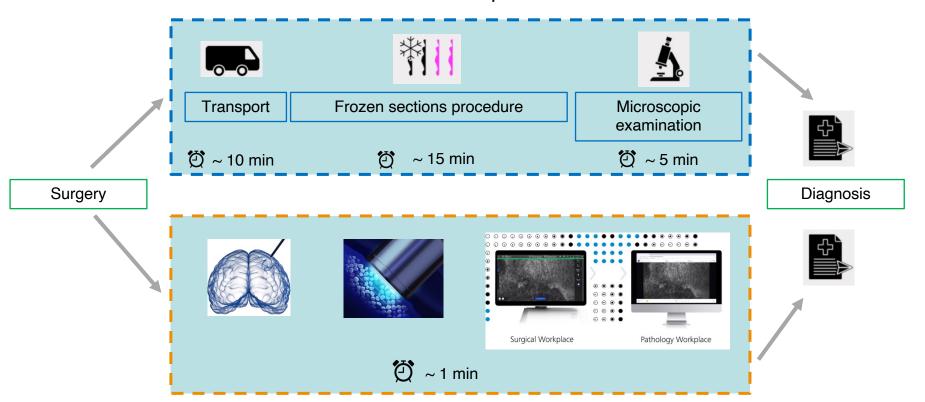
Ophthalmic Pathology

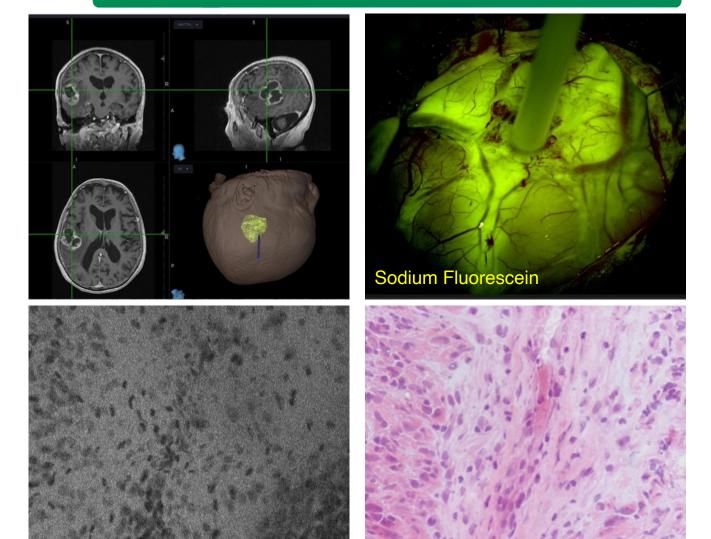
- Ophthalmic data management environment, connected to all devices, enabling a fully electronic innovative workflow and increased functionality and multidisciplinary collaboration
- Multimodal clinical data resource to improve quality measurements and patient safety
- Image repository of digital slides, second opinions, intra and live operative teleconsultation
- Real-world research including tumor classification prognostic evaluation with AI systems

Neuropathology

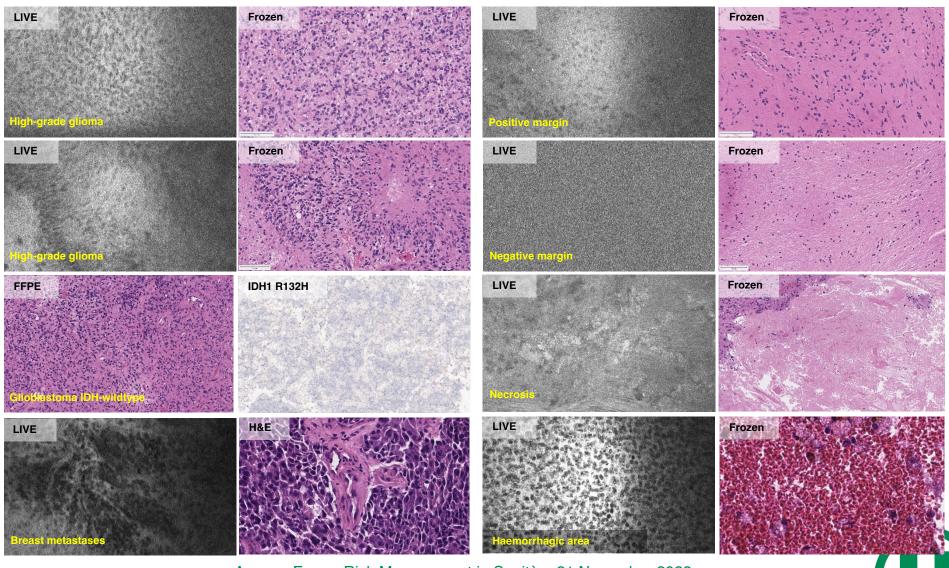
Confocal laser live endomicroscopy (Optical Biopsy)

Traditional intraoperative examination and in-vivo digital biopsy: workflow comparison





Arezzo, Forum Risk Management in Sanità – 21 Novembre 2023



The Pathology Suite enables real-time feedback on tissue microstructure through consultation and sharing of digital images (confocal laser endomicroscopy, CLE) with a multidisciplinary approach

Main fields of use: high-grade gliomas and brain metastases, where surgical radicality is the main prognostic factor

Main challenges:

- Specific training and a learning curve to interpret the acquired information
- It requires established workflows to optimize costs and benefits
- Technical issues: image resolution, small field of view, image acquisition timing rate, laser stability during image acquisition

Take Home Messages

- Radiology and pathology are transforming faster than any other medical discipline
- Integrated digital imaging health systems for each specified intended use case
- Regional, national, or international initiatives to drive digital pathology/AI into mass adoption
- Planning and coordination with multiprofessional staff and stakeholders

Process Engineers

Suppliers Scanners

Professional Pathology Associations

Marketing Companies

Biomedical Scientists

Developers algorithms

Ethicists

Developers PACS

Information technology personnel

Patients Organizations

Hospital Executives Process Engineers

Bioinformaticians

Clinicians

Developers Biomarkers

Lawyers

Managers

Radiologists

Molecular Biologists

Pathology Laboratories

